

Environmental Initiatives

Current ProFrac Initiatives

- Installing Engine Standby Controllers on pumping units at a pace of 1 – 4 per week
- Currently on 67 pumping units as of March 2021
- Adding enhanced dual fuel measurements and reporting
- Optimizing power end lubrication circuit
- Adding vibration testing and analytics
- Completing 100% 3D model for all pump configurations for FEA and CFD modeling

Dual Fuel Technology

Dual Fuel conversions on Frac pumps allow Natural Gas to be substituted for diesel while the unit is in operation.

- Less diesel = CO2 and other emissions reduction
- Natural gas used from line gas leads to substantial saving to the operator
- Substitution rates typically vary from 40% to 60% for Cummins QSK50
- Eliminates approximately 50% of diesel deliveries to and from location
- Natural gas CO2 emissions are 27% less than diesel burning emissions and 80% less NOX

Cost Benefit to the Customer (Dual Fuel)

- As previously noted, the substitution of natural gas adds the benefit of reduced cost for the customer due to natural gas being cheaper than diesel.
- For each gallon of fuel replaced, approximately 0.132 mcf of natural gas is used.
- Average off-road diesel price reported is \$2.70/gallon.
- Below is an example of annual savings running a dual fuel fleet.

	Diesel	Natural Gas		Diesel Cost	Natural Gas Cost	Savings Per	Pump Hours	Pumping Days		
Tier IV	(Gallons/Hour)	(mcf/hour)	Diesel Saved	Per Hour/Pump	Per Hour/Pump	Pump Per Hour	Per Day	Per Month	Pumps Inline	Annual Savings
Traditional Diesel	120		0	\$ 324.00			14	25	18	
Dual Fuel (40% sub)	72	6.34	48	\$ 194.40	\$ 14.57	115.03				\$ 8,696,056
Dual Fuel (50% sub)	60	7.92	60	\$ 162.00	\$ 18.22	143.78				\$ 10,870,070
Dual Fuel (60% sub)	48	9.50	72	\$ 129.60	\$ 21.86	172.54				\$ 13,044,084

^{*} Assuming similar thermal engine efficiency in Diesel and Dual Fuel mode

Engine Standby Controller (ESC)

- By using electric starts, the Engine Standby Controller replaces the existing hydraulic start and wet kit on the frac unit.
- The ESC system will automatically shut off the unit once it is in idle and the engine has cooled off sufficiently.
- Benefits include fuel cost savings, carbon footprint reduction, and less downtime for equipment maintenance.

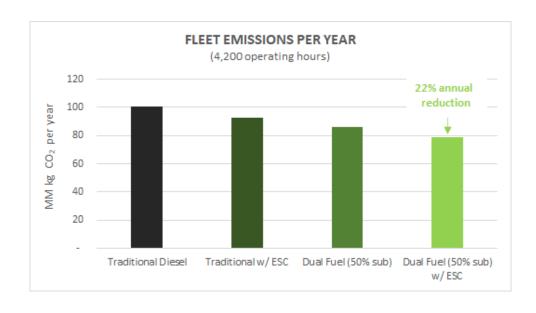
Cost Benefit to the Customer (ESC)

- The ESC will eliminate approximately 90% of idle time on the equipment.
- Below is an example of annual savings running a fleet equipped with ESC.

	1						- "		- 11 - 1	
	Diesel		Pumping Days		Idle Fuel Cost	Idle Fuel Cost	Gallons Per Day	Gallons of Fuel	Daily Fuel	Annual Fuel
Tier IV	(Gallons/Hour)	Idle Hours/Day	Per Month	Pumps Inline	Per Day/Pump	Per Day/Fleet	Consumed/Fleet	Reduced	Savings	Savings
Traditional Diesel	15	10	25	18	\$ 405.00	\$ 7,290.00	2,700.0			
ESC	15	1	25	18	\$ 40.50	\$ 729.00	270.0	2,430.00	\$ 6,561.00	\$ 1,968,300

SOPHIA and Carbon Footprint Transparency

- SOPHIA is a cloud-based platform that accompanies the ESC to provide visibility into fuel savings and carbon footprint reduction
- Enhances the credibility, consistency, and transparency of Carbon Footprint (CFP) quantification by following ISO standards
- Reliable CFP reporting



Emission Reductions

Dual Fuel and ESC

- The chart to the right illustrates estimated emissions reductions from the use of dual fuel and ESC technologies
- Assumptions:
 - CO₂ Emissions Coefficients per the EIA are 10.16 kg/gallon of diesel fuel and 53.12 kg/mcf of natural gas
 - A current ProFrac Tier 4 engine consumes approximately 15 gal/hour of diesel fuel during idle and 120 gal/hour during normal operation
 - ProFrac averages 40% idle time across all locations

22% ANNUAL REDUCTION IN EMISSIONS PER YEAR

ProFrac Commitments

- We are proud to be a part of providing affordable and reliable energy to people around the world, and we are committed to reducing the impact of our activities on the environment.
- As such, we are striving to quantify the carbon footprint of our operations and identify specific reduction targets by the end of 2021.
- Together with EKU, we will deliver and continuously improve carbon footprint data to our customers.
- We are already investing in carbon reducing technologies and will continue to do so.

Thank you!